Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
1.
Biomolecules & Therapeutics ; : 59-67, 2023.
Article in English | WPRIM | ID: wpr-966408

ABSTRACT

Thrombin is a serine protease that participates in a variety of biological signaling through protease-activated receptors. Intestinal myofibroblasts play central roles in maintaining intestinal homeostasis. In this study, we found that thrombin-induced apoptosis is mediated by the calcium-mediated activation of cytosolic phospholipase A2 in the CCD-18Co cell. Thrombin reduced cell viability by inducing apoptosis and proteinase-activated receptor-1 antagonist attenuated thrombin-induced cell death. Endogenous ceramide did not affect the cell viability itself, but a ceramide-mediated pathway was involved in thrombin-induced cell death. Thrombin increased intracellular calcium levels and cytosolic phospholipase A2 activity. The ceramide synthase inhibitor Fumonisin B 1, intracellular calcium chelator BAPTA-AM, and cytosolic phospholipase A2 inhibitor AACOCF 3 inhibited thrombin-induced cell death. Thrombin stimulated arachidonic acid release and reactive oxygen species generation, which was blocked by AACOCF 3, BAPTA-AM, and the antioxidant reagent Trolox. Taken together, thrombin triggered apoptosis through calcium-mediated activation of cytosolic phospholipase A2 in intestinal myofibroblasts.

2.
Biomolecules & Therapeutics ; : 550-558, 2023.
Article in English | WPRIM | ID: wpr-999697

ABSTRACT

Hair loss is a common condition that can have a negative impact on an individual’s quality of life. The severe side effects and the low efficacy of current hair loss medications create unmet needs in the field of hair loss treatment. Hyaluronan and Proteoglycan Link Protein 1 (HAPLN1), one of the components of the extracellular matrix, has been shown to play a role in maintaining its integrity. HAPLN1 was examined for its ability to impact hair growth with less side effects than existing hair loss treatments. HAPLN1 was predominantly expressed in the anagen phase in three stages of the hair growth cycle in mice and promotes the proliferation of human hair matrix cells. Also, recombinant human HAPLN1 (rhHAPLN1) was shown to selectively increase the levels of transforming growth factor-β receptor II in human hair matrix cells. Furthermore, we observed concomitant activation of the ERK1/2 signaling pathway following treatment with rhHAPLN1. Our results indicate that rhHAPLN1 elicits its cell proliferation effect via the TGF-β2-induced ERK1/2 pathway. The prompt entering of the hair follicles into the anagen phase was observed in the rhHAPLN1-treated group, compared to the vehicle-treated group. Insights into the mechanism underlying such hair growth effects of HAPLN1 will provide a novel potential strategy for treating hair loss with much lower side effects than the current treatments.

3.
Biomolecules & Therapeutics ; : 629-639, 2023.
Article in English | WPRIM | ID: wpr-999690

ABSTRACT

Cardiovascular diseases (CVDs) are the most common cardiovascular system disorders. Cellular senescence is a key mechanism associated with dysfunction of aged vascular endothelium. Hyaluronic acid and proteoglycan link protein 1 (HAPLN1) has been known to non-covalently link hyaluronic acid (HA) and proteoglycans (PGs), and forms and stabilizes HAPLN1-containing aggregates as a major component of extracellular matrix. Our previous study showed that serum levels of HAPLN1 decrease with aging. Here, we found that the HAPLN1 gene expression was reduced in senescent human umbilical vein endothelial cells (HUVECs). Moreover, a recombinant human HAPLN1 (rhHAPLN1) decreased the activity of senescence-associated β-gal and inhibited the production of senescence-associated secretory phenotypes, including IL-1β, CCL2, and IL-6. rhHAPLN1 also downregulated IL-17A levels, which is known to play a key role in vascular endothelial senescence. In addition, rhHAPLN1 protected senescent HUVECs from oxidative stress by reducing cellular reactive oxygen species levels, thus promoting the function and survival of HUVECs and leading to cellular proliferation, migration, and angiogenesis. We also found that rhHAPLN1 not only increases the sirtuin 1 (SIRT1) levels, but also reduces the cellular senescence markers levels, such as p53, p21, and p16. Taken together, our data indicate that rhHAPLN1 delays or inhibits the endothelial senescence induced by various aging factors, such as replicative, IL-17A, and oxidative stress-induced senescence, thus suggesting that rhHAPLN1 may be a promising therapeutic for CVD and atherosclerosis.

4.
Biomolecules & Therapeutics ; : 193-200, 2019.
Article in English | WPRIM | ID: wpr-739658

ABSTRACT

Ceramide metabolism is known to be an essential etiology for various diseases, such as atopic dermatitis and Gaucher disease. Glucosylceramide synthase (GCS) is a key enzyme for the synthesis of glucosylceramide (GlcCer), which is a main ceramide metabolism pathway in mammalian cells. In this article, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to determine GCS activity using synthetic non-natural sphingolipid C8-ceramide as a substrate. The reaction products, C8-GlcCer for GCS, could be separated on a C18 column by reverse-phase high-performance liquid chromatography (HPLC). Quantification was conducted using the multiple reaction monitoring (MRM) mode to monitor the precursor-to-product ion transitions of m/z 588.6 → 264.4 for C8-GlcCer at positive ionization mode. The calibration curve was established over the range of 0.625–160 ng/mL, and the correlation coefficient was larger than 0.999. This method was successfully applied to detect GCS in the human hepatocellular carcinoma cell line (HepG2 cells) and mouse peripheral blood mononuclear cells. We also evaluated the inhibition degree of a known GCS inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) on GCS enzymatic activity and proved that this method could be successfully applied to GCS inhibitor screening of preventive and therapeutic drugs for ceramide metabolism diseases, such as atopic dermatitis and Gaucher disease.


Subject(s)
Animals , Humans , Mice , Calibration , Carcinoma, Hepatocellular , Cell Line , Chromatography, Liquid , Dermatitis, Atopic , Gaucher Disease , Mass Screening , Mass Spectrometry , Metabolism , Methods
5.
Biomolecules & Therapeutics ; : 407-413, 2015.
Article in English | WPRIM | ID: wpr-36720

ABSTRACT

Paraquat dichloride (N,N-dimethyl-4-4'-bipiridinium, PQ) is an extremely toxic chemical that is widely used in herbicides. PQ generates reactive oxygen species (ROS) and causes multiple organ failure. In particular, PQ has been reported to be an immunotoxic agrochemical compound. PQ was shown to decrease the number of macrophages in rats and suppress monocyte phagocytic activity in mice. However, the effect of PQ on macrophage cell viability remains unclear. In this study, we evaluated the cytotoxic effect of PQ on the mouse macrophage cell line, RAW264.7 and its possible mechanism of action. RAW264.7 cells were treated with PQ (0, 75, and 150 muM), and cellular apoptosis, mitochondrial membrane potential (MMP), and intracellular ROS levels were determined. Morphological changes to the cell nucleus and cellular apoptosis were also evaluated by DAPI and Annexin V staining, respectively. In this study, PQ induced apoptotic cell death by dose-dependently decreasing MMP. Additionally, PQ increased the cleaved form of caspase-3, an apoptotic marker. In conclusion, PQ induces apoptosis in RAW264.7 cells through a ROS-mediated mitochondrial pathway. Thus, our study improves our knowledge of PQ-induced toxicity, and may give us a greater understanding of how PQ affects the immune system.


Subject(s)
Animals , Mice , Rats , Annexin A5 , Apoptosis , Caspase 3 , Cell Death , Cell Line , Cell Nucleus , Cell Survival , Herbicides , Immune System , Macrophages , Membrane Potential, Mitochondrial , Mitochondria , Monocytes , Multiple Organ Failure , Paraquat , Reactive Oxygen Species
6.
Korean Journal of Physical Anthropology ; : 31-43, 2004.
Article in Korean | WPRIM | ID: wpr-137180

ABSTRACT

Excessive use of alcohol is a serious problem in our society and induces various, severe alcohol related diseases. The cytotoxicities of ethanol are still largely unknown. We studied the molecular mechanisms of EtOH-induced SK-N-SH neuronal cell death and protective effects of baicalein and gramineus against EtOH-induced cytotoxicities. In our results, the cell death by EtOH showed morphologic features of apoptosis like as membrane blebbing, nuclear condensation and fragmentation. Furthermore, pretreated baicalein attenuated EtOH-induced neuronal cell death effectively. EtOH increased expression levels of p53 and both p53 antisense oligonucleotide and Pifithrin protected the cell death against EtOH. Also, EtOH induced mitochondrial event, collapse of mitochondrial membrane potential ( delta psi m ) and caspase cascade as a downstream of mitochondria. Interestingly, baicalein decreased expression levels of p53 and inhibited collapse of mitochondrial membrane potential. These results suggest that baicalein reduces mitochondrial dysfunction induced by EtOH through down-regulation of p53 expression levels. Also, baicalein attenuated activation of caspase, which was triggered by mitochondrial malfunction. But gramineus didn't have any protective effect. These results imply that baicalein significantly protects EtOH-induced neuronal cell death through regulating p53, mitochondrial dysfunction and caspase activation.


Subject(s)
Apoptosis , Blister , Cell Death , Down-Regulation , Ethanol , Membrane Potential, Mitochondrial , Membranes , Mitochondria , Neurons , Signal Transduction
7.
Korean Journal of Physical Anthropology ; : 31-43, 2004.
Article in Korean | WPRIM | ID: wpr-137177

ABSTRACT

Excessive use of alcohol is a serious problem in our society and induces various, severe alcohol related diseases. The cytotoxicities of ethanol are still largely unknown. We studied the molecular mechanisms of EtOH-induced SK-N-SH neuronal cell death and protective effects of baicalein and gramineus against EtOH-induced cytotoxicities. In our results, the cell death by EtOH showed morphologic features of apoptosis like as membrane blebbing, nuclear condensation and fragmentation. Furthermore, pretreated baicalein attenuated EtOH-induced neuronal cell death effectively. EtOH increased expression levels of p53 and both p53 antisense oligonucleotide and Pifithrin protected the cell death against EtOH. Also, EtOH induced mitochondrial event, collapse of mitochondrial membrane potential ( delta psi m ) and caspase cascade as a downstream of mitochondria. Interestingly, baicalein decreased expression levels of p53 and inhibited collapse of mitochondrial membrane potential. These results suggest that baicalein reduces mitochondrial dysfunction induced by EtOH through down-regulation of p53 expression levels. Also, baicalein attenuated activation of caspase, which was triggered by mitochondrial malfunction. But gramineus didn't have any protective effect. These results imply that baicalein significantly protects EtOH-induced neuronal cell death through regulating p53, mitochondrial dysfunction and caspase activation.


Subject(s)
Apoptosis , Blister , Cell Death , Down-Regulation , Ethanol , Membrane Potential, Mitochondrial , Membranes , Mitochondria , Neurons , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL